
2024/05/03 07:32 1/3 Vim

dw.nixre.net - https://dw.nixre.net/

Vim
editing, regex, text

<panel title="Macros">

Record a macro into register a:

qa

When done with adding actions to the macro stop the recording:

q

Execute the macro with

@a

Execute the previously executed macro again with

@@

</panel>

<panel title="Regex">

==== Capitalize the first letter of every word ====

s/\<./\u&/g

==== Lookahead / Lookbehind ====

|\@<= | positive lookbehind | |\@<! | negative lookbehind | |\@= | positive lookahead | |\@! | negative
lookahead |

Positive lookahead

foo bar
foo blubb

To substitue only foo that is followed by ' blubb' with bla

:%s/foo\( blubb\)\@=/bla/

negative lookahead

foo bar
foo blubb

To substitue foo that is not followed by ' blubb' with bla

:%s/foo\( blubb\)\@!/bla/

https://dw.nixre.net/tag:editing?do=showtag&tag=editing
https://dw.nixre.net/tag:regex?do=showtag&tag=regex
https://dw.nixre.net/tag:text?do=showtag&tag=text


Last update: 2023/09/04 06:35 pub:tech:vim https://dw.nixre.net/pub:tech:vim

https://dw.nixre.net/ Printed on 2024/05/03 07:32

Positive lookbehind

To substitute bar that is preceded by 'foo ' with blubb

foo bar
blubb bar

:%s/\(foo \)\@⇐bar/blubb/

Negative lookbehind

To substitute bar that is not preceded by 'foo ' with bla

foo bar
blubb bar

:%s/\(foo \)\@<!bar/bla/

==== substitute() ==== It is possible to call vim's substitute function. In contrast to the substitute
command the function can be used to modify a register's content.

let @a='This is a test for substitute' let @a=substitute(@a, '$', '()', ) The first let
instruction saves the string into register a. The second let instruction
shows substitute()'s usage. It needs 4 arguments: - The expression the
function is applied to - The pattern - The substitution - and flag, which can
be one of 'g' or '' In this case the expression was register a, pattern was
the end of line $ that was substituted with () so if you now instruct vim to
echo @a then "This is a test for substitute()" gets displayed. </panel>
<panel title="Settings"> ==== Syntax highlighting ==== Syntax highlighting in
general can be controlled by :set syntax=[on|off] temporarely on vim's
cmdline or vimrc file. In shell scripts variables are sometimes dark blue for
example. Depending on several circumstances this can be very hard to read. It
is possible to change vim's behavior of highlighting things with the
hi[light] command. Variables's look can be controlled with the PreProc
hightlight group and the groups arguments. :hi PreProc ctermfg=28 Would set
the color of the PreProc group to green - 28 in terms of 256 color table. *
:help hi * :help attr-list * :help cterm * :help term <note tip> Sometimes
(especially in the case that you use vim in tmux) it can be very helpful to
configure set t_Co=256 1) </note> </panel> <panel title="Snippets"> ====
Create directories for backups, swapfiles and undofiles ==== <code vim> for f
in ['backups', 'swapfiles', 'undofiles'] if !isdirectory($HOME . "/.vim/" .
f) call mkdir($HOME . "/.vim/" . f , "p", 0700) endif endfor </code> This -
combined with <code vim> set backupdir=$HOME/.vim/backups set
directory=$HOME/.vim/swapfiles set undodir=$HOME/.vim/undofiles </code>
ensures that vim collects backupfiles, swapfiles and undofiles in single
locations if backups, swapfiles and undofiles are not deactivated by <code
vim> set noundofile set nobackup set noswapfile </code>

This can lead to filename collisions



2024/05/03 07:32 3/3 Vim

dw.nixre.net - https://dw.nixre.net/

</panel> </accordion>

1)

this is a matter of bce: background color erase. You may wish to read this thread

From:
https://dw.nixre.net/ - dw.nixre.net

Permanent link:
https://dw.nixre.net/pub:tech:vim

Last update: 2023/09/04 06:35

https://github.com/tmux/tmux/issues/699
https://dw.nixre.net/
https://dw.nixre.net/pub:tech:vim

	Vim

